Abstract

ABSTRACTDiamond thin films were grown on a scratched silicon crystal surface by a novel CVD technique. The heated substrate, mounted on a rotating platform, was exposed to a bombardment of sputtered carbon atoms, from a graphite target in a helium plasma, and subsequently bombarded by atomic hydrogen generated by a hot tungsten filament. The resulting diamond films were characterized by Raman spectroscopy and SEM. The SEM images indicate highly faceted diamond crystals and the Raman spectra show a single narrow peak characteristic of pure diamond with no graphitic component. The effective growth rate is about 0.5 microns per hour of exposure time. The novel sequential CVD reactor is described and possible growth mechanisms are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.