Abstract

An experimental study on diamond nucleation and growth in a carbon solution in multicomponent carbonate, carbonate-silicate, silicate and sulfide melts was performed using a high-pressure toroidal anvil-with-hole cell with graphite resistive furnace. The boundary conditions of diamond spontaneous crystallization and seeded growth are determined for all the diamond growth media with the use of the PT diagram of diamond crystal growth. A density of diamond nucleation in the studied carbonate, carbonate-silicate, silicate, and sulfide melts with dissolved carbon exceeds (3.0–5.0) × 10 2 nuclei/mm 3 with a maximum around 1.0 × 10 5 nuclei/mm 3 at formation of polycrystalline “diamondite”. Raman spectra of quenched carbonate-carbon, carbonate-silicate-carbon, silicate-carbon and sulfide-carbon melts contain bands relating to the region of C-C stretching modes in diamond and graphite microphases. FTIR spectra show that nitrogen defects in the carbonate-synthetic diamond are characterized with the mixed Ib-IaA type and reveal a high nitrogen concentration (up to 850 ppm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.