Abstract

AbstractWe present a finite element discretization scheme for the compressible and incompressible elasticity problems that possess the following properties: (i) the discretization scheme is defined on a triangulation of the domain; (ii) the discretization scheme is defined—and is identical—in all spatial dimensions; (iii) the displacement field converges optimally with mesh refinement; and (iv) the inf–sup condition is automatically satisfied. The discretization scheme is motivated both by considerations of topology and analysis, and it consists of the combination of a certain mesh pattern and a choice of interpolation that guarantees optimal convergence of displacements and pressures. Rigorous proofs of the satisfaction of the inf–sup condition are presented for the problem of linearized incompressible elasticity. We additionally show that the discretization schemes can be given a compelling interpretation in terms of discrete differential operators. In particular, we develop a discrete analogue of the classical tensor differential complex in terms of which the discrete and continuous boundary‐value problems are formally identical. We also present numerical tests that demonstrate the dimension‐independent scope of the scheme and its good performance in problems of finite elasticity. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.