Abstract

Nickel aluminide, Ni3Al, has high hot strength, which could help overcome the high heat and the interrupted vibrations that diamond cutting tools encounter during operation. Reaction pseudo-hipping, on the other hand, require only a short dwell time at high temperatures, which are detrimental to the diamond grits. Thus, it is promising to combine the unique nickel aluminide with the unique reaction pseudo-hipping process and replace the commonly used cobalt matrix. This study reports for the first time the process and application of reaction-pseudo-hipped Ni3Al matrix for diamond tools. In this work, mixtures of elemental nickel, aluminum, boron powder, and diamond particles are reaction-pseudo-hipped. Densities greater than 99 pct and mechanical properties comparable to those of the cobalt are attained. With high-grade diamond grits, the tools thus prepared show, under dry cutting conditions, a grinding ratio 118 pct higher than that with the cobalt matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call