Abstract

We have demonstrated the feasibility of cooling high power solid-state lasers with diamond windows, whose thermal conductivity is about two orders of magnitude higher than sapphire's, the material conventionally used for this purpose. Since pumping and cooling were along the same axis, a Cartesian thermal gradient was achieved, while the zigzag scheme was used to minimize thermal lensing. An output power of 200Watt was achieved from a single Nd:YVO<sub>4</sub> slab in a zigzag configuration when pumped with 600Watt diodes at 808nm. The maximum output power previously reported in the literature with Nd:YVO<sub>4</sub> using conventional cooling schemes is only about 100W. A 2.3x4x24mm<sup>3</sup> slab was pumped from its broad side (4x24 mm<sup>2</sup>) through a 0.3mm thick optical diamond window placed in close contact with the lasing crystal. The diamond window, held in a water-cooled copper housing acted as a heat conductor. The other broad side of the crystal was cooled directly by its water-cooled copper housing. The output of a two-head configuration was 295Watt. By using a RTP Q-switch, 124Watt average power was obtained at 15kHz with a pulse width of 17nsec, pumping at 650Watt. An additional larger head was developed to pump a Nd:YAG slab. The concept of the pumping and cooling is identical to the Nd:YVO<sub>4</sub> laser head. An output power of 1000Watt was achieved from a single Nd:YAG slab when pumped with 2500Watt diodes at 808nm. The slab dimensions are 3×12×90mm<sup>3</sup>.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.