Abstract

We study physical properties of the symmetric diamond chain with delocalized interstitial spins. We derive an exact solution of the model and characterize the phases of the system at zero temperature. On the basis of this solution, we examine its magnetic and thermal properties as well. The case of nonconserved electron number is then considered. There are phases, which we term as nonclassical, for which electrons in Hubbard dimers are in quantum entangled states. We finally study quantum entanglement depending on Hamiltonian parameters and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.