Abstract
Diamond-based magnetic field sensors have attracted great interest in recent years. In particular, wide-field magnetic imaging using nitrogen-vacancy (NV) centers in diamond has been previously demonstrated in condensed matter, biological, and paleomagnetic applications. Vector magnetic imaging with NV ensembles typically requires an applied field (>10 G) to separate the contributions from four crystallographic orientations, hindering studies of magnetic samples that require measurement in low or independently specified bias fields. Here we decompose the NV ensemble magnetic resonance spectrum without such a bias field by modulating the collected light at the microscope's Fourier plane. In addition to enabling vector magnetic imaging at arbitrarily low fields, our method can be used to extend the dynamic range at a given bias field. As demonstrated here, optically-detected diamond magnetometry stands to benefit from Fourier optical approaches, which have already found widespread utility in other branches of photonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.