Abstract
Diamond particles are unique fillers for metal matrix composites because of their extremely high modulus, high thermal conductivity, and low coefficient of thermal expansion. Diamond reinforced aluminum metal matrix composites were prepared using a pressureless metal infiltration process. The diamond particulates are coated with SiC prior to infiltration to prevent the formation of Al4C3, which is a product of the reaction between aluminum and diamond. The measured thermal conductivity of these initial diamond/Al metal matrix composites is as high as 259 W/m-K. The effects of coating thickness on the physical properties of the diamond/Al metal matrix composite, including Young's modulus, 4-point bend strength, coefficient of thermal expansion, and thermal conductivity, are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.