Abstract

The ionic active centers and hydrogen-bond donors (HBDs) in heterogeneous catalytic materials are highly beneficial for enhancing the interaction between solid–liquid-gas three-phase interfaces and promoting effective fixation of carbon dioxide (CO2). Diamide-linked imidazolyl poly(dicationic ionic liquid)s catalysts PIMDILs (PMAIL-x and PBAIL-2) were synthesized through the copolymerization of diamide-linked imidazolyl dicationic ionic liquids (IMDILs) with divinylbenzene (DVB), which successfully enable the simultaneous construction of high-density and uniformly distributed ionic active centers (2.014–4.883 mmol g−1) and hydrogen-bond donors (HBDs). The as-synthesized PIMDILs present excellent catalytic activity in promoting the cycloaddition of CO2 with epoxides. PMAIL-2 could convert epichlorohydrin (ECH) with a quantitative conversion of 99.8 % (selectivity > 99 %) under ambient pressure. Furthermore, only a decrease in activity of 5 % was observed even after six cycles of recycling. The excellent conversions (>97.3 %) were achieved for various terminal substituted epoxides. The experimental and characterization results reveal that the high-density ionic active centers and amide HBDs can effectively activate the reaction substrates, their synergistic effect plays a crucial role at the catalyst interface. This work is expected to provide some useful insights for the rational construction of heterogeneous catalysts for CO2 conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call