Abstract

The diametral creep of pressure tubes (PTs) in CANDU (CANada Deuterium Uranium) reactors is one of the principal aging mechanisms governing the heat transfer and hydraulic degradation of the heat transport system (HTS). PT diametral creep leads to diametral expansion, which affects the thermal hydraulic characteristics of the coolant channels and the critical heat flux (CHF). The CHF is a major parameter determining the critical channel power (CCP), which is used in the trip setpoint calculations of regional overpower protection (ROP) systems. Therefore, it is essential to predict PT diametral creep in CANDU reactors. PT diametral creep is caused mainly by fast neutron irradiation, temperature and applied stress. The objective of this study was to develop a bundle position-wise linear model (BPLM) to predict PT diametral creep employing previously measured PT diameters and HTS operating conditions. The linear model was optimized using a genetic algorithm and was devised based on a bundle position because it is expected that each bundle position in a PT channel has inherent characteristics. The proposed BPLM for predicting PT diametral creep was confirmed using the operating data of the Wolsung nuclear power plant in Korea. The linear model was able to predict PT diametral creep accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.