Abstract
A new approach of diametral compressive testing with circular anvils is proposed. The circular anvils are used to select a suitable contact width or to avoid the collapse of the specimen in the contact edge. Furthermore, the statistical corrections on the diametral compressive strength for the effects of the size and stress distribution are explained by the application of Weibull’s statistical theory. The experimental results of the diametral compressive testing are compared with the uniaxial tensile strengths for some kinds of graphite and marble, and the discrepancies between the two strengths are discussed. According to our macroscopic brittle fracture criterion under biaxial stress state, which was proposed recently, the tensile strength can be deduced from the diametral compressive strength σHC* and the uniaxial compressive strength σC as follows, σt*=KICKIIC12σCσHC*(1+σx/σH)+σC{σHC*(1−σx/σH)−σC}+σC2 where σt* is the deduced tensile strength, σx/σH is the ratio of maximum and minimum principal stresses at the center of the disk, and KIC and KIIC are the values of Mode I and Mode II fracture toughness. The deduced values σt* are ascertained experimentally to agree very well with the uniaxial tensile strength in wide range of brittle materials, such as graphite and marble.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.