Abstract

The inclusion graph of a finite group [Formula: see text], written as [Formula: see text], is defined to be an undirected graph that its vertices are all nontrivial subgroups of [Formula: see text], and in which two distinct subgroups [Formula: see text], [Formula: see text] are adjacent if and only if either [Formula: see text] or [Formula: see text]. In this paper, we determine the diameter of [Formula: see text] when [Formula: see text] is nilpotent, and characterize the independent dominating sets as well as the automorphism group of [Formula: see text].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.