Abstract

In this paper, a change of diameter structure in a pre-maturing stand of black locust and common hackberry under the influence of a late thinning is analysed. The research is based on three permanent experimental plots and two measurements of diameters in a five-year period. One of the plots is a control plot and two plots are experimental, where the thinning was carried out in a stand 28-years old, with the thinning intensity of 28.9–30.6% of the initial density, approximately evenly distributed across diameter classes. In the investigated stand common hackberry came from the neighbouring areas in the stand structure. The initial measurement in the autumn of 2014 confirmed the share of common hackberry of 16–18% in the total number of trees thicker than 5 cm with a dominantly reversed J shape of the diameter structure and the presence of trees in all the diameter classes. In the period of stand age from 28 to 33 years, a dominant process on all treatments was the mortality of thinner trees, while the recruitment of common hackberry trees was recorded in all treatments. On the control plot, a quarter of the trees died, while an eighth of the remaining trees died in the thinned plots, mostly black locust trees. In thinned plots, only black locust trees died with a characteristic that the intensity of mortality was higher in thinner trees, while in the control plot some thick black locust trees died, as well as and some thinner common hackberry trees. In the five-year period, numerical parameters of variability (standard deviation, coefficient of variation), the shape of distributions (skewness and kurtosis) and heterogeneity of diameters at breast height (Gini index, Lorenz asymmetry coefficient) have shown a trend of increasing variability and change of diameter distributions of trees in all treatments, but it is more expressed in thinned plots compared to the control plots. Growth dominance coefficient of diameters shows that the competition between the collectives of both species and the black locust collective is of asymmetric type and more expressed in the thinning treatments. In common hackberry trees on the control plot the competition between the trees is of asymmetric type, while on the thinned plots, the competition is of symmetric type. This shows that after thinning, common hackberry has a biological potential that is higher than that of black locust and that the natural succession can be accelerated through thinnings.

Highlights

  • Forest management influences tree size distributions, spatial mingling of tree species and natural regeneration

  • By knowing the dynamics of such structures, we can understand the functioning of populations

  • Study Area The research was conducted in a black locust and common hackberry stand in Management Unit (MU) "Subotičke šume", which represents a majority of the Subotica-Horgoš sands consisting entirely of anthropogenic stands

Read more

Summary

Introduction

Forest management influences tree size distributions, spatial mingling of tree species and natural regeneration. Forest structure affects a range of properties, including total biomass production, biodiversity and habitat functions, and the quality of ecosystem services. It usually refers to the way in which the attributes of trees are distributed within a forest ecosystem (von Gadow et al 2012). Biological populations have age, size, spatial and genetic structures. By knowing the dynamics of such structures, we can understand the functioning of populations.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call