Abstract

Vanadium Pentoxide is considered as an intriguing material for several advanced technological applications such as supercapacitors, Lithium-ion batteries, photo-catalysis and optical waveguide. In this work, we have presented a facile and non-toxic method for the synthesis of Vanadium Pentoxide nanobelts. Considering the aforesaid motivations, we tuned the size of Vanadium Pentoxide nanobelts by simply varying the synthesis temperature. The XRD results confirm that the obtained phase is Vanadium Pentoxide with no impurities found within the experimental limitations. The analysis by Scanning Electron Microscopy (SEM) depicts that the diameter of nanobelts decreased from 52.7nm to 44.7nm with the increase in synthesis temperature within range 180oC-220 °C respectively. The UV–Vis-Spectrum shows that bandgap of nanobelts increased in the range 2.25eV-3eV with the increase in synthesis temperature within range 180oC-220 °C. For field emission measurements, the variation in field enhancement factor and turn-on voltage is also observed. These results indicate that by just varying a simple parameter one can tune the band gap and electronic properties of Vanadium Pentoxide nanobelts. These studies show that Vanadium Pentoxide nanobelts can be promising candidate for optoelectronic device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.