Abstract

The cycling dynamics of the internal kink mode, which drives sawtooth oscillations in tokamak plasmas, is studied using the three dimensional, non-linear magnetohydrodynamic (MHD) code XTOR-2F [H. Lütjens and J.-F. Luciani, J. Comput. Phys. 229, 8130 (2010)]. It is found that sawtooth cycling, which is characterized by quiescent ramps and fast crashes in the experiment, can be recovered in two-fluid MHD provided that a criterion of diamagnetic stabilization is fulfilled. The simulation results indicate that diamagnetic effects alone may be sufficient to drive sawteeth with complete magnetic reconnection in high temperature Ohmic plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.