Abstract
Levitation offers extreme isolation of mechanical systems from their environment, while enabling unconstrained high-precision translation and rotation of objects. Diamagnetic levitation is one of the most attractive levitation schemes because it allows stable levitation at room temperature without the need for a continuous power supply. However, dissipation by eddy currents in conventional diamagnetic materials significantly limits the application potential of diamagnetically levitating systems. Here, a route toward high-Q macroscopic levitating resonators by substantially reducing eddy current damping using graphite particle based diamagnetic composites is presented. Resonators that feature quality factors Q above 450 000 and vibration lifetimes beyond one hour are demonstrated, while levitating above permanent magnets in high vacuum at room temperature. The composite resonators have a Q that is >400 times higher than that of diamagnetic graphite plates. By tuning the composite particle size and density, the dissipation reduction mechanism is investigated, and the Q of the levitating resonators is enhanced. Since their estimated acceleration noise is as low as some of the best superconducting levitating accelerometers at cryogenic temperatures, the high Q and large mass of the presented composite resonators positions them as one of the most promising technologies for next generation ultra-sensitive room temperature accelerometers.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.