Abstract

We present a kinetic theory for boundary layers associated with MHD tangential ‘discontinuities’ in a collisionless magnetized plasma such as those observed in the solar wind. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary, one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers, in which the current is carried by protons are discussed; in particular, we considered cases in which the magnetic field intensity and/or direction changed across the layer. In every case, the thickness was of the order of a few proton gyroradii and the field changed smoothly, although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. Our results are consistent with the observations of boundary layers in the solar wind near 1 AU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.