Abstract

Ipsocentric current density maps are computed at the coupled Hartree-Fock level in the 6-31G** basis set for the planar C(2v) B3LYP geometries of the expanded porphyrins, sapphyrin and orangarin. Both give clearly dominant global macrocyclic ring currents, but with opposite senses of circulation: in 22[small pi] sapphyrin, a diatropic current runs, with some bifurcation, around the conventional 22-centre delocalisation pathway; in 20[small pi] orangarin, a paratropic current runs around the inner 17-atom pathway. In agreement with the annulene analogy for these macrocycles, analysis of orbital contributions shows that in each case topology, energy and symmetry of the frontier orbitals together determine the macrocyclic ring current. In sapphryrin, 4-electron diamagnetism (aromaticity) arises from translationally allowed HOMO-LUMO excitations as in benzene itself; in orangarin, 2-electron paramagnetism (antiaromaticity) arises from rotationally allowed HOMO-LUMO excitations as in planarised cyclooctatetraene. The active orbitals invoked in the explanation of ring currents are those involved in the longstanding four-orbital model of porphyrin electronic spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.