Abstract
The article discusses the system of dialogue control manipulation robots. The analysis of the basic methods of automatic speech recognition, speech understanding, dialogue management, voice response synthesis in dialogue systems has been carried out. Three types of dialogue management are considered as "system initiative", "user initiative" and "combined initiative". A system of object-oriented dialog control of a robot based on the theory of finite state machines with using a deep neural network is proposed. The main difference of the proposed system lies in the separate implementation of the dialogue process and robot’s actions, which is close to the pace of natural dialogue control. This method of constructing a dialogue control robot allows system to automatically correct the result of speech recognition, robot’s actions based on tasks. The necessity of correcting the result of speech recognition and robot’s actions may be caused by the users’ accent, working environment noise or incorrect voice commands. The process of correcting speech recognition results and robot’s actions consists of three stages, respectively, in a special mode and a general mode. The special mode allows users to directly control the manipulator by voice commands. The general mode extends the capabilities of users, allowing them to get additional information in real time. At the first stage, continuous speech recognition is built by using a deep neural network, taking into account the accents and speech speeds of various users. Continuous speech recognition is a real-time voice to text conversion. At the second stage, the correction of the speech recognition result by managing the dialogue based on the theory of finite automata. At the third stage, the actions of the robot are corrected depending on the operating state of the robot and the dialogue management process. In order to realize a natural dialogue between users and robots, the problem is solved in creating a small database of possible dialogues and using various training data. In the experiments, the dialogue system is used to control the KUKA manipulator (KRC4 control) to put the desired block in the specified location, implemented in the Python environment using the RoboDK software. The processes and results of experiments confirming the operability of the interactive robot control system are given. A fairly high accuracy (92 %) and an automatic speech recognition rate close to the rate of natural speech were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.