Abstract

Diallyl trisulfide (DATS), derived from garlic, is a well-known hydrogen sulfide (H2 S) donor. H2 S has recently emerged as a novel gasotransmitter involved in the regulation of cancer progression. The present study demonstrated that DATS along with other two H2 S donors, NaHS and GYY4137, significantly inhibited papillary thyroid carcinoma KTC-1 cells growth. DATS treatment triggered a rapid H2 S generation within 5 min in KTC-1 cells. Iodoacetamide, a potent thiol blocker reagent, partially rescued the cell membrane damage and ultimate cell death induced by DATS, indicating H2 S contributed to the apoptosis-inducing efficacy of DATS on thyroid cancer cells. Specifically, DATS treatment significantly upregulated the expression and enzymatic activity of cystathionine gamma-lyase (CTH), one of H2 S-producing enzymes, which was responsible for endogenous H2 S generation. After DATS treatment, H2 S quickly permeated cell membranes and activated NF-κΒ/p65 signaling pathway in KTC-1 cells. Nuclear translocated NF-κB bound to the promoter of CTH to enhance its transcription. These evidences proved that exogenous H2 S elevated CTH expression. CTH, in turn, catalytically generated a much higher level of endogenous H2 S. This positive feedback sustained excess H2 S production, which resulted in PTC cells growth inhibition. These findings may shed light on the development of novel H2 S-based antitumor agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call