Abstract

Grain yields of maize in the lowland tropics are generally limited by short days and high temperatures that minimize durations of incident light. Little has been published on the effects of this limiting environment on the genetics of grain filling rate (GFR), and grain filling period (GFP) in tropical maize germplasm. This study sought to address these limitations. A set of 8 elite maize inbreds of tropical origin and their 28 diallel hybrids were grown in three seasons at Waimanalo, Hawaii, USA. Seasonal differences included > 100% differences in values of photosynthetic active radiation (PAR) during grain formation. Information was sought on the performance variations and the genotype by season interactions for GFR, GFP, days to mid-silk (DTS), kernel weight, with estimates of general (GCA) and specific combining ability (SCA) and their interactions with seasons. Significant differences occurred for inbreds, hybrids, and genotype by season interactions, GCA and SCA effects and their interactions with seasons, which could be attributed primarily to the differences in PAR values among seasons in Hawaii during grain filling. Additive genetic effects predominated for GFR and GFP. Breeding approaches that take advantage of additive gene effects including hybrid breeding with evaluations in multiple Hawaii seasons may be used to alter GFR and GFP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call