Abstract

Today's architectural design trend based on the recognition of pluralism has led to multiple design directions for all building types including tall buildings. This contemporary design trend has produced many complex-shaped tall buildings, such as twisted, tilted, tapered and freeform towers. Among many different structural systems developed for tall buildings, the diagrid system, with its powerful structural rationale and distinguished aesthetic potential, is one of the most widely used systems for today's tall buildings. This paper studies structural performance of diagrid systems employed for complex-shaped tall buildings. Twisted, tilted, tapered and freeform tall buildings are designed with diagrid structures, and their structural performances are investigated. For the twisted diagrid study, the buildings are twisted up to 3 degrees per floor. In the tilted diagrid study, the angles of tilting range from 0 to 13 degrees. The impact of eccentricity is investigated for gravity as well as lateral loads in tilted towers. In the study of tapered diagrid structures, the angles of tapering range from 0 to 3 degrees. In the study of freeform diagrid structures, lateral stiffness of freeform diagrids is evaluated depending on the degree of fluctuation of free form. The freeform floor plans fluctuate from plus/minus 1.5 meter to plus/minus 4.5 meter boundaries of the original square floor plan. Parametric structural models are generated using appropriate computer programs and the models are exported to structural engineering software for design, analyses and comparative studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call