Abstract
We present a diagrammatic Monte Carlo study of a lattice polaron interacting with an acoustic phonon branch through the deformation potential. Weak and strong coupling regimes are separated by a self-trapping region where quantum resonance between various possible lattice deformations is seen in the ground-state properties, spectral function, and optical conductivity. This study shows that the acoustic lattice polaron represents a distinct quantum object with unique features, markedly different from any previously considered polaron model. In particular, the acoustic lattice polaron exhibits an interplay between long- and short wavelength acoustic vibrations, resulting in a composite phonon cloud which leads to the formation of multiple competing polaron states with a complex spectral response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.