Abstract

Covalently linked acene dimers are of interest as candidates for intramolecular singlet fission. We report many-electron calculations of the energies and wave functions of the optical singlets, the lowest triplet exciton, and the triplet-triplet biexciton, as well as the final states of excited state absorptions from these states in a family of phenyl-linked pentacene dimers. While it is difficult to distinguish the triplet and the triplet-triplet from their transient absorptions in the 500-600 nm region, by comparing theoretical transient absorption spectra against earlier and very recent experimental transient absorptions in the near- and mid-infrared, we conclude that the end product of photoexcitation in these particular bipentacenes is the bound triplet-triplet and not free triplets. We predict additional transient absorptions at even longer wavelengths, beyond 1500 nm, to the equivalent of the classic 21Ag- in linear polyenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.