Abstract

It is known that one-loop Feynman integrals possess an algebraic structure encoding some of their analytic properties called the coaction, which can be written in terms of Feynman integrals and their cuts. This diagrammatic coaction, and the coaction on other classes of integrals such as hypergeometric functions, may be expressed using suitable bases of differential forms and integration contours. This provides a useful framework for computing coactions of Feynman integrals expressed using the hypergeometric functions. We will discuss examples where this technique has been used in the calculation of two-loop diagrammatic coactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.