Abstract
Let $\mathbf{U}^-_q = \mathbf{U}^-_q(\mathfrak{g})$ be the negative part of the quantum group associated to a finite dimensional simple Lie algebra $\mathfrak{g}$, and $\sigma : \mathfrak{g} \to \mathfrak{g}$ be the automorphism obtained from the diagram automorphism. Let $\mathfrak{g}^{\sigma}$ be the fixed point subalgebra of $\mathfrak{g}$, and put $\underline{\mathbf{U}}^-_q = \mathbf{U}^-_q(\mathfrak{g}^{\sigma})$. Let $\mathbf{B}$ be the canonical basis of $\mathbf{U}_q^-$ and $\underline{\mathbf{B}}$ the canonical basis of $\underline{\mathbf{U}}_q^-$. $\sigma$ induces a natural action on $\mathbf{B}$, and we denote by $\mathbf{B}^{\sigma}$ the set of $\sigma$-fixed elements in $\mathbf{B}$. Lusztig proved that there exists a canonical bijection $\mathbf{B}^{\sigma} \simeq \underline{\mathbf{B}}$ by using geometric considerations. In this paper, we construct such a bijection in an elementary way. We also consider such a bijection in the case of certain affine quantum groups, by making use of PBW-bases constructed by Beck and Nakajima.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.