Abstract

Diagonally implicit multistage integration methods are employed for the numerical integration in time of first order hyperbolic systems arising from Chebyshev pseudospectral discretizations of the spatial derivatives in the wave equation. These methods have stage order q equal to the order p. The stage values can be utilized to recover approximations to the solution u of sufficiently high accuracy. The phenomenon of order reduction, which is present in the integration of differential systems by numerical methods of low stage order, such as explicit Runge–Kutta methods, is avoided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.