Abstract

The class of stochastic Runge–Kutta methods for stochastic differential equations due to Rößler is considered. Coefficient families of diagonally drift-implicit stochastic Runge–Kutta (DDISRK) methods of weak order one and two are calculated. Their asymptotic stability as well as mean-square stability (MS-stability) properties are studied for a linear stochastic test equation with multiplicative noise. The stability functions for the DDISRK methods are determined and their domains of stability are compared to the corresponding domain of stability of the considered test equation. Stability regions are presented for various coefficients of the families of DDISRK methods in order to determine step size restrictions such that the numerical approximation reproduces the characteristics of the solution process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.