Abstract

A dynamic three-dimensional system of linear equations in terms of displacements of the theory of elasticity of transversely isotropic media is given explicit expressions for phase velocities and polarization vectors of plane waves. All the longitudinal normals are found. For some values of the elasticity moduli, the system of equations is reduced to a diagonal shape. For static equations, all the conditions of the system ellipticity are determined. Two new representations of displacements through potential functions that satisfy three independent quasi-harmonic equations are given. Constraints on elasticity moludi, at which the corresponding coefficients in these representations are real, different, equal, or complex, are determined. It is shown that these representations are general and complete. Each representation corresponds to a recursion (symmetry) operator, i.e., a formula of production of new solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.