Abstract

The electro-hydraulic servo system gradually processes toward the fast, high-power and high-precision direction. The traditional PID control needs to coordinate the contradiction between rapidity and stability, and cannot meet the system performance requirements in the case of parameter variations and external interference. Based on electro-hydraulic servo system structure and principles, system mathematical model was established, and Diagonal Recurrent Neural Network (DRNN)-based adaptive PID controller was designed and compared with positional PID control. The simulation results show that: DRNN adaptive PID control effect is superior to positional PID control, which can effectively improve the system dynamic and anti-interference performance, and has strong self-learning and adaptive capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.