Abstract

Inorganic composites for enhancing the in-plane shear capacity of masonry walls with irregular texture were investigated on twenty-one panels under diagonal compression tests. Three specimens were used as control and twelve specimens were strengthened with two Fibre Reinforced Mortars (FRM-A and FRM-B), characterized by a different content of fibres embedded in the lime-based matrix. The remaining six specimens were strengthened with Fabric Reinforced Cementitious Mortars (FRCM), consisting in a GFRP grid embedded in a fibre reinforced matrix (the same used for FRM-A). The influence of single-side and double-side strengthening configurations on the capacity of strengthened panels was also investigated, to point out the reduction in strengthening effectiveness in case of single-sided applications. The results showed that all the inorganic composites adopted for the strengthening techniques provided a substantial increase of shear capacity. The grid in FRCM strengthened panels played an important role in both strength and deformation capacity at peak. The different fibres content (lower than 50% in weight) in FRM systems slightly affected the overall performance of panels. Finally, analytical predictions of experimental results were reported and discussed and a preliminary analytical model for estimating the FRM shear contribution was proposed, obtaining a good agreement with test results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.