Abstract

Handwritten character recognition is considered a complex problem since one’s handwritten character has its characteristics. Data used for this research was a photo of handwritten or scanned handwritten. In this research, Backpropagation Neural Network (BPNN) was used to recognize handwritten Batak Toba character, wherein preprocessing stage feature extraction was done using Diagonal Based Feature Extraction (DBFE) to obtain feature value. Furthermore, the feature value will be used as an input to BPNN. The total number of data used was190 data, where 114 data was used for the training process and another 76 data was used for testing. From the testing process carried out, the accuracy obtained was 87,19 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.