Abstract

The non-thermal electrons accelerated during solar flares can produce enhanced and broadened chromospheric lines when they precipitate into the chromosphere. In this paper, we propose a method to diagnose the non-thermal processes using two chromospheric lines, lines. First, we perform non-LTE calculations of these two lines for various (thermal) model atmospheres and (non-thermal) electron beams. Since the two lines have different sensitivities to the non-thermal electrons, a set of line spectra can uniquely determine a model atmosphere and an electron beam. We then apply this method to a solar flare for which we have observed two-dimensional spectra of the two lines. In particular, we examine the temporal variation of thermal vs. non-thermal effects in flare bright kernels, as well as the spatial variation across flare ribbons. The results show clearly that the non-thermal effects appear most obviously at the flare maximum, and preferentially at the outer edges of flare ribbons. The results are consistent with flare theoretical models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call