Abstract

Abstract The goal of this paper is to derive the physical conditions of the prominence observed on 2017 March 30. To do so, we use a unique set of data in Mg ii lines obtained with the space-borne Interface Region Imaging Spectrograph (IRIS) and in Hα line with the ground-based Multi-Channel Subtractive Double Pass spectrograph operating at the Meudon solar tower. Here, we analyze the prominence spectra of Mg ii h and k lines, and the Hα line in the part of the prominence which is visible in both sets of lines. We compute a grid of 1D NLTE (i.e., departures from the local thermodynamical equilibrium) models providing synthetic spectra of Mg ii k and h, and Hα lines in a large space of model input parameters (temperature, density, pressure, and microturbulent velocity). We compare Mg ii and Hα line profiles observed in 75 positions of the prominence with the synthetic profiles from the grid of models. These models allow us to compute the relationships between the integrated intensities and between the optical thickness in Hα and Mg ii k lines. The optical thickness τ Hα is between 0.05 and 2, and is between 3 and 200. We show that the relationship of the observed integrated intensities agrees well with the synthetic integrated intensities for models with a higher microturbulence (16 km s−1) and T around 8000 K, ne = 1.5 × 1010 cm−3, p = 0.05 dyne. In this case, large microturbulence values could be a way to take into account the large mixed velocities existing in the observed prominence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.