Abstract
An inverse problem is used to significantly improve the frequency response of a three-segment electrodiffusion (ED) sensor subjected to strong inertial effects in high-amplitude unsteady flows. It is shown that the fluctuating component of the wall shear rate’s magnitude and direction can be accurately determined when both variables exhibit simultaneous large-amplitude variations, even when using an uncalibrated probe. Measurements are performed in the vicinity of a rotating cylinder in motion in a highly viscous fluid with poor electrochemical diffusivity, thus establishing a harsh environment for an ED sensor. Results using the inverse problem showed strong concordance with PIV complementary measurements in most cases and further expose the potential of this non-intrusive technique for thorough wall shear stress diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.