Abstract

In order to study the state of gas in galaxies, diagrams of the relation of optical emission line fluxes are used allowing one to separate main ionization sources: young stars in the H II regions, active galactic nuclei, and shock waves. In the intermediate cases, when the contributions of radiation from OB stars and from shock waves mix, identification becomes uncertain, and the issue remains unresolved on what determines the observed state of the diffuse ionized gas (DIG) including the one on large distances from the galactic plane. Adding of an extra parameter - the gas line-of-sight velocity dispersion - to classical diagnostic diagrams helps to find a solution. In the present paper, we analyze the observed data for several nearby galaxies: for UGC 10043 with the galactic wind, for the star forming dwarf galaxies VII Zw 403 and Mrk 35, for the galaxy Arp 212 with a polar ring. The data on the velocity dispersion are obtained at the 6-m SAO RAS telescope with the Fabry-Perot scanning interferometer, the information on the relation of main emission-line fluxes - from the published results of the integral-field spectroscopy (the CALIFA survey and the MPFS spectrograph). A positive correlation between the radial velocity dispersion and the contribution of shock excitation to gas ionization are observed. In particular, in studying Arp 212, "BPT-sigma relation" allowed us to confirm the assumption on a direct collision of gaseous clouds on the inclined orbits with the main disk of the galaxy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.