Abstract
ABSTRACTAs there is an extensive body of research on diagnostics in regression models, various outlier detection methods have been developed. These methods have been extended to mixed effects models and generalized linear models, but there exist intrinsic drawbacks and limitations. This paper presents two-dimensional plots to identify discordant subjects and observations in generalized linear mixed effects models, displaying discordance in two directions. The sTudentized Residual Sum of Squares is not an extension of any regression tools but a new approach designed to efficiently reflect the characteristics of repeated measures. And this noteworthy clustering of outliers is identified in the plot. Applications to real-life examples are presented to illustrate the favorable/beneficial performance of the new tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.