Abstract

In this article, we focus on some diagnostics for linear regression model with first-order autoregressive and symmetrical errors. The symmetrical class includes both light- and heavy-tailed univariate symmetrical distributions, which offers a more flexible framework for modeling. Maximum likelihood estimates are computed via the Fisher-score method. Score statistic and its adjustment are proposed for testing autocorrelation of the random errors. Local influence diagnostics are also derived for the model under some usual perturbation schemes. The performances of the test statistics are investigated through Monte Carlo simulations. Finally, a real data set is used to illustrate our diagnostic methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.