Abstract

Central nervous system (CNS) diseases include Alzheimer's disease (AD), Parkinson's disease (PD), brain tumors, strokes, and other important diseases that are harmful and fatal to human beings. CNS diseases have the characteristics of high fatality rates, difficult diagnosis, and costly treatment. The diagnosis and treatment of CNS diseases by molecular imaging are usually limited by the depth of tissue penetration and the blood-brain barrier (BBB). Therefore, it is still a huge challenge to distinguish between the lesion and the surrounding parenchymal boundary with high sensitivity and specificity. Compared with traditional fluorophores with aggregation-caused quenching effect, luminogens with aggregation-induced emission (AIE) characteristics have strong near-infrared deep penetration, large Stokes shift, excellent biocompatibility, light stability, and desirable BBB permeability. In view of this, developing novel AIE-based materials for diagnostics and theranostics of CNS diseases is promising and of great significance. Herein, we highlight the recent research progress in this field with a special focus on near-infrared imaging and AIE nanorobots for CNS diseases. The design principle of AIE probes is discussed in detail, and the outlook is presented as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call