Abstract

Genome sequencing (GS>30x) is beginning to be adopted as a comprehensive genome-wide test for the diagnosis of rare disease in the post-natal setting. Recent studies demonstrated the utility of exome sequencing (ES) in prenatal diagnosis, we investigate the potential benefits for GS to act as a comprehensive prenatal test for diagnosis of fetal abnormalities. We performed GS on a prospective cohort of 37 singleton fetuses with ultrasound-identified structural abnormalities undergoing invasive prenatal testing. GS was performed in parallel with standard diagnostic testing, and the prioritized variants were classified according to ACMG guidelines and reviewed by a panel of board-certified laboratory and clinical geneticists. Diagnostic sequence variants were identified in 5 fetuses (14%), with pathogenic variants found in NIPBL, FOXF1, RERE, AMMECR1, and FLT4. A further 7 fetuses (19%) had variants of uncertain significance (VUS) that may explain the phenotypes. Importantly, GS also identified all pathogenic variants reported by clinical microarray (2 CNVs, 5%). Prenatal GS offered diagnoses (sequence variants and CNVs) in 19% of fetuses with structural anomalies. GS has the potential of replacing multiple consecutive tests, including microarray, gene panels, and WES, to provide the most comprehensive analysis in a timely manner necessary for prenatal diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.