Abstract

BackgroundAround 40% of individuals with epilepsy have an underlying identifiable genetic etiology. Common methods for epilepsy genetic testing are chromosomal microarray (CMA) and epilepsy-genes sequencing (EGS). Historically, CMA was the first-line test for patients with epilepsy, but recent studies have shown that EGS has a superior diagnostic yield. To further optimize testing algorithms for epilepsy, we compared these tests’ diagnostic yields and explored how they are influenced by age of onset and phenotype complexity. MethodsGenetic test results from a cohort of patients with epilepsy were used to determine the diagnostic yield of CMA (n = 366) versus EGS (n = 370) for genetic epilepsy etiologies. Further analysis examined the probability of diagnostic results based on age of seizure onset and patients’ phenotype complexity. ResultsFor patients who underwent CMA, causative variants were found in 28 of 366 cases (7.7%), and 60 of 366 patients (16.4%) had at least one variant of uncertain significance (VUS). For EGS, 65 of 370 (17.6%) cases had causative variants, whereas 155 of 370 (41.9%) had at least one VUS. EGS had a significantly higher diagnostic yield than CMA (odds ratio [OR] = 2.63, P < 0.001). This difference in diagnostic yield was further pronounced among patients with infantile seizure onset (OR = 4.69, P < 0.001) and patients with additional neurological findings (OR = 2.99, P < 0.001). ConclusionTo minimize the time and resources required to reach a diagnosis, clinicians and insurers alike should consider using EGS as an initial diagnostic tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call