Abstract

Pulmonary nodules suspicious for lung cancer are frequently diagnosed. Evaluating and optimizing the diagnostic yield of lung nodule biopsy is critical as innovation in bronchoscopy continues to progress. This is a retrospective cohort study. Consecutive patients undergoing guided bronchoscopy for suspicious pulmonary nodule(s) between February 2020 and July 2021 were included. The cone-beam computed tomography (CBCT)+ radial endobronchial ultrasound (r-EBUS) group had their procedure using CBCT-derived augmented fluoroscopy along with r-EBUS. The CBCT+ ultrathin bronchoscope (UTB)+r-EBUS group had the same procedure but with the use of an ultrathin bronchoscope. The r-EBUS group underwent r-EBUS guidance without CBCT or augmented fluoroscopy. We used multivariable logistic regression to compare diagnostic yield, adjusting for confounding variables. A total of 116 patients were included. The median pulmonary lesion diameter was 19.5mm (interquartile range, 15.0 to 27.5mm), and 91 (78.4%) were in the peripheral half of the lung. Thirty patients (25.9%) underwent CBCT+UTB, 27 (23.3%) CBCT, and 59 (50.9%) r-EBUS alone with unadjusted diagnostic yields of 86.7%, 70.4%, and 42.4%, respectively ( P <0.001). The adjusted diagnostic yields were 85.0% (95% CI, 68.6% to 100%), 68.3% (95% CI, 50.1% to 86.6%), and 44.5% (95% CI, 31.0% to 58.0%), respectively. There was significantly more virtual navigational bronchoscopy use in the r-EBUS group (45.8%) compared with the CBCT+UTB (13.3%) and CBCT (18.5%) groups, respectively. CBCT procedures required dose area product radiation doses of 7602.5µGym 2 . Compared with the r-EBUS group, CBCT + UTB + r-EBUS was associated with higher navigational success, fewer nondiagnostic biopsy results, and a higher diagnostic yield. CBCT procedures are associated with a considerable radiation dose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call