Abstract
To evaluate the role of whole-tumor radiomics analysis of apparent diffusion coefficient (ADC) maps in predicting early recurrence (ER) of solitary hepatocellular carcinoma (HCC) ≤ 5cm and compare the diagnostic efficiency of whole-tumor and single-slice ADC measurements. One hundred and seventy patients with primary HCC were randomly divided into the training set (n = 119) and the test set (n = 51). The diagnostic efficiency was compared between the whole-tumor and single-slice ADC measurements. The clinical-radiological model was established by selected significant clinical characteristics and qualitative imaging features. The radiomics model was constructed using the least absolute shrinkage and selection operator (LASSO) logistic regression algorithm. The significant clinical-radiological risk factors and radiomics features were integrated to develop the combined model. Receiver operating characteristic (ROC) curves were used for evaluating the predictive performance. Cirrhosis, age, and albumin were significantly associated with ER in the clinical-radiological model selected by the random forest classifier. The diagnostic efficiency of the whole-tumor ADC measurements was slight higher than that of the single-slice (AUC = 0.602 and 0.586, respectively). The clinical-radiological model (AUC = 0.84 and 0.82 in the training and test sets, respectively) showed better diagnostic performance than the radiomics model (AUC = 0.70 and 0.69 in the training and test sets, respectively) in predicting ER. The combined model showed optimal predictive performance with the highest AUC values of 0.88 and 0.85 in the training and test sets, respectively. The whole-tumor ADC measurements performed better than the single-slice ADC measurements. The clinical-radiological model performed better than the radiomics model for predicting ER in patients with solitary HCC ≤ 5cm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.