Abstract

For a graph G, let fij be the number of spanning rooted forests in which vertex j belongs to a tree rooted at i. In this paper, we show that for a path, the fij's can be expressed as the products of Fibonacci numbers; for a cycle, they are products of Fibonacci and Lucas numbers. The doubly stochastic graph matrix is the matrix F=(fij)n×n/f, where f is the total number of spanning rooted forests of G and n is the number of vertices in G. F provides a proximity measure for graph vertices. By the matrix forest theorem, F-1=I+L, where L is the Laplacian matrix of G. We show that for the paths and the so-called T-caterpillars, some diagonal entries of F (which provide a measure of the self-connectivity of vertices) converge to φ-1 or to 1-φ-1, where φ is the golden ratio, as the number of vertices goes to infinity. Thereby, in the asymptotic, the corresponding vertices can be metaphorically considered as “golden introverts” and “golden extroverts,” respectively. This metaphor is reinforced by a Markov chain interpretation of the doubly stochastic graph matrix, according to which F equals the overall transition matrix of a random walk with a random number of steps on G.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.