Abstract

BackgroundWe explored the diagnostic performance of cerebrospinal fluid (CSF) biomarkers in allowing differentiation between frontotemporal lobar degeneration (FTLD) and Alzheimer’s disease (AD), as well as between FTLD pathological subtypes.MethodsCSF levels of routine AD biomarkers (phosphorylated tau (p-tau181), total tau (t-tau), and amyloid-beta (Aβ)1–42) and neurofilament proteins, as well as progranulin levels in both CSF and serum were quantified in definite FTLD (n = 46), clinical AD (n = 45), and cognitively healthy controls (n = 20). FTLD subgroups were defined by genetic carrier status and/or postmortem neuropathological confirmation (FTLD-TDP: n = 34, including FTLD-C9orf72: n = 19 and FTLD-GRN: n = 9; FTLD-tau: n = 10).ResultsGRN mutation carriers had significantly lower progranulin levels compared to other FTLD patients, AD, and controls. Both t-tau and p-tau181 were normal in FTLD patients, even in FTLD-tau. Aβ1–42 levels were very variable in FTLD. Neurofilament light chain (Nf-L) was significantly higher in FTLD compared with AD and controls. The reference logistic regression model based on the established AD biomarkers could be improved by the inclusion of CSF Nf-L, which was also important for the differentiation between FTLD and controls. Within the FTLD cohort, no significant differences were found between FTLD-TDP and FTLD-tau, but GRN mutation carriers had higher t-tau and Nf-L levels than C9orf72 mutation carriers and FTLD-tau patients.ConclusionsThere is an added value for Nf-L in the differential diagnosis of FTLD. Progranulin levels in CSF depend on mutation status, and GRN mutation carriers seem to be affected by more severe neurodegeneration.

Highlights

  • We explored the diagnostic performance of cerebrospinal fluid (CSF) biomarkers in allowing differentiation between frontotemporal lobar degeneration (FTLD) and Alzheimer’s disease (AD), as well as between FTLD pathological subtypes

  • Two FTLD patients were excluded from the statistical analysis as none of their AD biomarker values could be determined, probably related to preanalytical factors

  • Biomarker values outside of the assay limits of detection were set to the lowest/highest detection point ±20%, and this value was used in nonparametric statistical analysis (t-tau: 1 FTLD and 5 AD patients; p-tau181: 3 FTLD patients; Neurofilament light chain (Nf-L): 3 FTLD patients, 2 controls, and 3 AD patients; pNf-H: 9 FTLD, 7 controls, and 8 AD patients)

Read more

Summary

Introduction

We explored the diagnostic performance of cerebrospinal fluid (CSF) biomarkers in allowing differentiation between frontotemporal lobar degeneration (FTLD) and Alzheimer’s disease (AD), as well as between FTLD pathological subtypes. Frontotemporal lobar degeneration (FTLD) is the primary cause of early-onset dementia after Alzheimer’s disease (AD) [1]. Goossens et al Alzheimer's Research & Therapy (2018) 10:31 disease-specific biochemical markers present in biofluids (cerebrospinal fluid (CSF) and blood) [10, 11]. Well-characterized and validated diagnostic markers specific for FTLD pathology do not exist, with the exception of decreased progranulin concentrations in serum or plasma for GRN mutation-related FTLD, an important subgroup of FTLD-TDP [12, 13]. As FTLD can present with tau-positive inclusions as a primary pathology, the AD CSF biomarkers total tau (ttau) and hyperphosphorylated tau at threonine 181 (ptau181) are interesting markers. It is noteworthy that recent studies have shown that the p-tau181/t-tau ratio can be useful in the differentiation of FTLD-tau from FTLD-TDP [21, 22]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call