Abstract

To evaluate the diagnostic performance of intravoxel incoherent motion (IVIM) MR imaging and 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma multiforme (GBM). Fifty patients, 17 with PCNSL and 33 with GBM, were retrospectively studied. From the 3 Tesla IVIM data, the perfusion fraction (f) and diffusion coefficient (D) were obtained. In addition, the maximum standard uptake value (SUVmax ) was obtained from the FDG-PET data. Each of the three parameters was compared between PCNSL and GBM using Mann-Whitney U-test. The performance in discriminating between PCNSL and GBM was evaluated using receiver-operating characteristics analysis and area-under-the-curve (AUC) values for the three parameters. The fmax and Dmin values were significantly higher in GBM than in PCNSL (P < 0.01 and P < 0.0001, respectively). In addition, the SUVmax value was significantly lower in GBM than in PCNSL (P < 0.0005). The AUC values for fmax , Dmin , and SUVmax were 0.756, 0.905, and 0.857, respectively. The combination of the fmax and Dmin increased the diagnostic performance (AUC = 0.936) of fmax (P < 0.05), but this value was not significantly different from the values for Dmin (P = 0.30). IVIM-MR imaging noninvasively provides useful quantitative information in distinguishing between PCNSL and GBM. J. Magn. Reson. Imaging 2016;44:1256-1261.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call