Abstract

In the present work, we have studied the spatial evolution of the nickel alloy plasma produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q-switched Nd: YAG laser by placing the target material in air at atmospheric pressure. The four Ni I lines at 335.10 nm, 394.61 nm, 481.19 nm and 515.57 nm are used for the determination of electron temperature (Te) using Boltzmann plot method. The electron temperature is calculated as a function of distance from the target surface for both modes of Nd: YAG laser. In case of fundamental (1064 nm) mode of laser, the temperature varies from 13700 - 10270 K as the distance is varied from 0 to 2 mm. Whereas, in the case of second (532 nm) mode of laser it varies from 13270 - 9660 K for the same distance variation. The electron temperature has also been determined by varying the energy of the laser from 90 to 116 mJ, for the fundamental (1064 nm) harmonic and from 58 to 79 mJ for the second (532 nm) harmonics of the laser. The temperature increases from 14192 to 15765 K in the first case and from 13170 to 14800 K for the second case. We have also studied the spatial behavior of the electron number density in the plasma plume. The electron number density (Ne) in the case of fundamental (1064 nm) harmonic of the laser having pulse energy 125 mJ varies from 2.81 × 1016 to 9.81 × 1015 cm-3 at distances of 0 mm to 2.0 mm, whereas, in the case of second (532 nm) harmonic, with pulse energy 75 mJ it varies from 3.67 × 1016 to 1.48 × 1016 cm-3 for the same distance variation by taking Ni I line at 227.20 nm in both the cases.

Highlights

  • In the present study, Laser induced breakdown spectroscopy (LIBS) has been employed, which is an analytical promising detection technique for solid, liquid and gaseous samples and is based on optical detection of certain atomic and molecular species by monitoring their emission signals from the laser induced plasma

  • The electron number density (Ne) in the case of fundamental (1064 nm) harmonic of the laser having pulse energy 125 mJ varies from 2.81 × 1016 to 9.81 × 1015 cm−3 at distances of 0 mm to 2.0 mm, whereas, in the case of second (532 nm) harmonic, with pulse energy 75 mJ it varies from 3.67 × 1016 to 1.48 × 1016 cm−3 for the same distance variation by taking Ni I line at 227.20 nm in both the cases

  • One requires a pulsed laser for generating micro plasma on the target surface and the elemental analysis is accomplished by studying the emission of the plasma plume

Read more

Summary

Introduction

Laser induced breakdown spectroscopy (LIBS) has been employed, which is an analytical promising detection technique for solid, liquid and gaseous samples and is based on optical detection of certain atomic and molecular species by monitoring their emission signals from the laser induced plasma. This technique is very simple as compared to many other types of elemental analysis methods because of its straightforward experimental set-up.

Experimental Details
Optical Emission Spectra
Determination of Electron Temperature
Determination of Electron Number Density
Variation of Plasma Parameters
Validity of Local Thermodynamic Equilibrium Condition
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.