Abstract

Abstract The intense wavenumber-2 stratospheric warming of February 1979 is analyzed in a transformed Eulerian-mean formalism, and compared with diagnostics generated by the model warming of Dunkerton et al. (1981). Significant differences in the evolution of the zonal mean flow are found. The corresponding differences in wave, mean-flow interaction are examined by studying planetary wave activity in the troposphere and stratosphere, as measured by the Eliassen-Palm flux and its divergence. It is found that in the stratosphere, the direction of this flux changes several times during the warming. Zonal flow deceleration is most intense when the midlatitude stratospheric flux has positive poleward and upward components. Conversely, deceleration is smallest when the flux is directed equatorward. Some mechanisms that may account for this switching are discussed. However, unlike the model, the high-latitude zonal flow reversal does not arise from nonlinear critical layer interaction with the waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.