Abstract

With respect to the inherent NP-hard complexity of Optimization of testability diagnostic strategy problem, a predatory search algorithm simulating animal predatory strategies was designed. This algorithm adopted the gross test expense including state probability, isolation matrix and test expense as its objective function, defined local and global search by the restriction value of search space based on two points exchange, and realized the conversion between local and global search by adjusting the restriction value of search space. It had better ability to conduct local search and jump out of local optimal solution simultaneously, and provided a better resolution for the optimization of testability diagnostic strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.