Abstract

BackgroundCam and pincer-type morphologies can cause femoroacetabular impingement syndrome (FAI) and can be measured on plain radiographs using the alpha angle and the center edge angle. As an addition to plain radiographs and to assess femoroacetabular impingement, it is possible to visualize the interplay of the acetabular and femoral morphology by means of dynamic three-dimensional simulation of hip joint. Therefore, the objective of this study is to compare alpha angles and center edge angles on plain radiographs with the dynamic computerized tomography (CT) analysis in patients with complaints of femoroacetabular impingement.MethodsAll patients from our prospective cohort from 2012 to 2015 who underwent radiographs and a dynamic CT analysis for FAI were selected. Cam type morphologies were measured with the alpha angle and pincer type morphologies with lateral center-edge angle on radiographs and with CT analysis. The dynamic CT analysis also calculated position and size of impingement of femur and acetabulum. Intra-operative assessment was used to confirm impingement. Sensitivity, specificity and predictive values were calculated compared with respect to the intra-operative assessment.ResultsA total of 127 patients were included. 90 cam morphologies and 45 pincer morphologies were identified intra-operatively.The sensitivity and specificity for cam morphology measured with radiographs was 84 and 72% compared to 90 and 43% with three dimensional dynamic analyses. The sensitivity and specificity for pincer morphology measured with radiographs was 82 and 39% compared to 84 and 51% with three dimensional dynamic analyses.ConclusionsDiagnostic accuracy is comparable in three-dimensional dynamic analysis of CT scans and radiographs representing FAI caused by cam or pincer type morphology.Level of evidenceIV

Highlights

  • Cam and pincer-type morphologies can cause femoroacetabular impingement syndrome (FAI) and can be measured on plain radiographs using the alpha angle and the center edge angle

  • A cam type morphology is caused by an osseous deformity of the femoral head-neck contour, an overgrowth of bone, which can impinge with the acetabular rim during flexion and rotation of the hip

  • The objective of this study is to compare alpha angles and center edge angles on plain radiographs with the angles measured on dynamic computerized tomography (CT) analysis in patients with complaints of FAI syndrome

Read more

Summary

Introduction

Cam and pincer-type morphologies can cause femoroacetabular impingement syndrome (FAI) and can be measured on plain radiographs using the alpha angle and the center edge angle. As an addition to plain radiographs and to assess femoroacetabular impingement, it is possible to visualize the interplay of the acetabular and femoral morphology by means of dynamic three-dimensional simulation of hip joint. A pincer type morphology is an overcoverage of the acetabulum, which can be focal, and can cause impingement of the joint Both morphologies can cause damage in the hip joint, which might result in pain and possible degeneration of the hip joint. The cartilage is sheared off the bone by the nonspherical femoral head while the labrum remains untouched This typical damage caused by a cam morphology is a chondro-labral disruption and a progressive chondral delamination: a so-called wave sign. A cam type morphology, the asphericity of the femoral head, was identified in the peripheral compartment after release of the traction

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.